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slot width s increases. The sha~ peak may again be greater than

the broad peak as indicated by the case ofs = 1.00 mm. Again the

effective dielectric constant is not strongly dependent on the slot

width.

One conclusion from Fig. 3 to Fig. 5 is that the thickness of the

substrate is the most important parameter m affecting the leakage

attenuation. The effect of changing slot width is somewhat higher

than that of the changing strip width, but both are minor in com-

passion with that of substrate thickness.

v. CONCLUS1ONS

The dispersion and leakage characteristics such as the effective

dielectric constant and normalized attenuation constant of coplanar

waveguide have been treated using the spectral-domain approach

together with the complex residue technique. To handle the com-

plex propagation constant of the coplanar waveguide, the Fourier

transform and the Parseval’s theorem in complex plane are prop-

erly extended. A number of numerical results, such as the effective

dielectric constant and normalized attenuation constant, have been

presented to illustrate the characteristics of coplanar waveguide.

Sharp peaks just after leakage together with broad peaks are two

interesting phenomena observed in the attenuation characteristics.

The physical mechanism of these peaks and the detail of transition

in c,~f and cx/ko curves are still unclear and are worthy of further

study
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The Scattering Matrix Formulation for Overmod(ed

Coaxial Cavities

W. Lawson and P. E. Latham

Abstract—The scattering matrix formulation for complex right-cir-

cular cavities is extended to coaxial circuits with variable inner radii.

The modified eigenvectors, which include the TEM wave, and the mod-

ified boundary conditions are presented. The properties of several con-
figurations are examined and transmission measurements are shown to

be in good agreement with theory.

I. INTRODUCTION

The operation of coaxial transmission lines in frequency bands

where only the TEM mode can propagate is straightforward and

widespread. However, some potential applications, including lhigh

power microwave tubes. require highly overmoded coaxial cir-

cuits. (lyrotrons, for example, have utilized coaxial circuits oper-

ating in the TE5,Z mode [1], and more recently in the TE20,,3 mode

[2]. The principle advantage of coaxial cavities over right circular

cavities is the enhancement in stable operation due to the decrease

in mode density.

This work describes the calculation of resonant frequencies (real

part and diffractive quality factor) for overmoded coaxial cavities.

It is an extension of previous results which utilize the scattering

matrix approach [3]–[7] to analyze right circular cavities [8]. The

addition of the inner conductor results in four complications. First,

coaxial systems can support TEM waves. Second, the radial de-

pendence of the fields involve bessel functions of the second kind.

A consequence of the second fact is that the perpendicular wave

number becomes a complicated function of the inner and outer

radii. Finally, variations in the radius of the inner conductor result

in additional boundary conditions.

In Section II, the analysis is described briefly and the coefficients

of the mode coupling matrix are presented. Typical numerical re-

sults, along with some experimental data, are described in Section

III. The final section summarizes the results of this work.

II. THEORY

Because the scattering matrix approach is described in detail

elsewhere [8]. only a brief outline is given here. In this appralach,

a cavity is divided into regions with uniform cross section and the
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electromagnetic fields in each region are expanded in terms of the

eigenmodes in that region. The expansion coefficients are deter-

mined by matching boundary conditions at the discontinuities be-

tween regions. This process is facilitated by computing the Mode

Coupling (MC) matrices, whose elements are generated by ex-

pressing the eigenmodes in one region in terms of the eigenmodes

in the adjacent region and can be expressed as

The integral is over the common cross-sectional area, ~,. is the mth

normalized tangential electric field, and the superscript refers to

the bounda~ number. The MC matrices are coupled by the scat-

tering process with matrices which represent the propagation of the

electromagnetic waves in the constant cross-section waveguide

sections. We follow exactly the notation in [8]; expressions for the

full set of fields and the final cascaded matrix are given there. The

differences between the coaxial and right circular cavities manifest

themselves mainly in the coefficients of the (frequency-indepen-

dent) MC matrix. These coefficients have already been computed

for right circular cavities; here we compute them for coaxial sys-

tems.

Fig. 1 shows the junction between two perfectly conducting

waveguides with different inner and outer radii. Without loss of

generality, assume that the boundary of Region 2 is contained en-

tirely with Region 1, i.e., r,,z = r,), and riz z ril. The case of

Region 1 being contained entirely with Region 2 can be handled

with a simple matrix transposition. The mixed bounda~ case, when

r,,z > r<,, and r-i* > ril or when r,,z < r,,l and rjz < rjl, can be

handled by adding a zero length region which yields two unmixed

boundaries [8].

The eigenmodes in coaxial geometry depend on the cross-prod-

ucts of bessel functions, which are defined below:

I-@, Y) = J.(X)Y.(Y) – .J,,(Y)yfl(x)

qn(x, Y) = J.(X)YXY) – JXY)Y.(4

r.(x, y) = .T~(x)~,(y) – .ln(y)Y~(x)

S.(X, y) = J;(x) Yj(y) – .T;(y)Y;(x)

where .ln and Y, are bessel functions of the first and second kind,

respectively. For TM modes, the pth eigenfunction for the nth azi-

muthal mode is (in cylindrical coordinates):

(2a)

where j = ~. The normalization factor, k;, is chosen to be

ki = {d(~.or,, )2r~(-ynPr,,, ynpri) – (2/7r)2]}, ‘1/2 (2b)

the perpendicular wavenumber satisfies Y.P = XRP/r,,, and xnP is the

pth solution of p.(x.P, x,Pri / r,,) = O. The normalized tangential
+ 4

electric field is given by Z.P = VrT ~ where V’r = ~(~ / ~p) +

&jn/p). For TE modes, the eigenfunction is

The normalization factor is

(3a)

– ((’Y.pri)2 -%371-”2 ‘3b)
where YEP = Ynp / r., and Ynp /)is the p th solutlon of .sn(y”p, y,luri r{,

= ~. The normalized tangential electric field is given by ~HP = –.?

x V,T~p.

—— /
//////// ‘
w~’ /

REGION 1 REGION 2

Fig. 1. Schematic of a boundary between two coaxial waveguides

For the TEM mode, the eigenfunction is (n = O):

TEM = kEM in (p) (4a)

where

k ‘M = [27r in (r,,/ri)]-”2 (4b)

The tangential electric field is 7 = ~k ‘M /p. These definitions re-

sult in the condition

where b is the kroniker delta.

In principle, there are nine different cases for the elements of the

MC matrix, depending on whether Z!. and Z ~ are derived from the

TE, TM, or TEM modes. However, four of the possibilities yield

zero results because TE modes never couple to the TEM mode and

TM modes in Region 2 (the smaller region) don’t couple to either

TEM or TE modes in Region 1. The remaining MC matrix com-

ponents are found by integrating (1) either directly or by parts. The

integration in the radial direction is from ri2 to ro2. The results are

summarized below:

TE ~ TE:

(–)21— —
7r ro271

S,1(7)712, y,nrl,) ]

27 Y iy,rd%?
P,,li =

[
)r,,(7;ro2, 7,ri2)Pn(Y,nrr,2, -r,nr[ i

Y:, – -r:

TM ~ TE:

P.i = –2~jnk ~k~
[ 9n(l’iro2 ~ 7iri2)Pf7(Ymr,,2, “fmril )

TM + TEM :

Pmi = 2mkflk~M[po(y,mrr,2, -y,nri[) – po(ymriz, -y,nrii )]

(5a)

(5b)

(5C)

(5d)
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TEM + TEM:

Pm, = 2~k~Mk FM In (r<,z/ rrz). (Se)

In (5), y~ indicates T.m in Region 1 and -yI indicates y., in Region

2. It is straightforward to show that these matrix elements reduce

to the ones given in [8] in the limit r,{, r,z + O.

III. NUMERICAL RESULTS

In this section we discuss two examples, First, the scattering

formalkm k used to calculate the resonant frequency of a cavity

with a coupling aperture. Second, the approach is used to compute

power transmission data through a coaxial circuit with a varying

cross section.

Consider the microwave circuit shown in Fig. 2(a). The lengths

and outer radii of the four regions are given in Table 1. An inner

conductor of variable radius, O < r, < 1.5 cm, extends through

the first three regions. A qualitative description of the dependence

of resonant frequency on inner radius is as follows. First, assume

r, = O and consider all the closed cavity (CC) eigenfrequencies

corresponding to the length and outer radius of region two. If an

ideal (CC) resonant frequency is below the cutoff frequency of the

lowest corresponding radial mode (usually the TEfl,) in the adjacent

regions, then the eigenfrequency of the actual mode will be close

to the CC frequency. Also, the corresponding quality factor (Q)

will be quite high. Otherwise, the mode is a complicated “whole

tube” mode whose energy is often not well localized,

Because the zeros of the TM modes, XHP,increase monotonically

with inner radius (for a fixed outer radius), the corresponding TM

eigenfrequencies and Qs increase with r{. The cutoff frequencies of

the TEnl modes (n > O) decrease, however, because y,l approaches

n as r, approaches r-o. Therefore, the corresponding TEnl, resonant

frequencies and Qs decrease. The higher order TE@ > 1) eigen-

frequencies initially decrease, but then increase due to the interlac-

ing of TE and TM mode zeros. The TEOm cutoff frequencies are

equal to the TM,. frequencies, so the TEOH resonant frequencies

monotonically increase with inner radius.

For the circuit of Fig. 2(a), these concepts are illustrated in Fig.

3 with three representative modes. Fig. 3a represents the depen-

dence of resonant frequency for modes with one axial variation

when ri = O. The corresponding quality factors are shown in Fig.

3(b). The TE21, mode’s resonant frequency is slightly below the

CC result and decreases as predicted. The quality factor also de-

creases as predicted. The increase in both frequency and Q at the

very end as r, + r. occurs because of the increased reflection at

the predominantly metal boundary. The TEO1, mode tracks the CC

result almost exactly because of the large Q factor which quickly

goes off the theoretical scale.

The behavior of the TMO1 mode is considerably more compli-

cated. When r, = O, the TM mode is moderately well cutoff, which

results in a high Q (-400) and a resonant frequency near the CC

result. The addition of an inner conductor allows coupling to the

TEM (with no cutoff frequency) and drastically drops the Q. While

the r, = O limit is recovered, the quality factor drops to about Q

- 100 when ri = 10-30 cm. The second complication involves

mode crossings between the T’EM and TM modes. The second ax-

ial TEM mode has a CC resonant frequency at 7.49 GHz. This
results in the peak in Q and the slow variation in resonant frequency

near r, = 0.7 cm.

Fig. 2(b) shows the axial field variation in I& for the TEOI and

TEZ1 modes at a radius of 1 cm when r, = 0.5 cm. The figure

reveals the continuity of E$ at the boundaries. The relative peak is

higher for the TEO1, mode because of its higher Q. Likewise, the

amplitude of the traveling wave (t > 5.5 cm) is larger for the
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Fig. 2. (a) The simulated coaxial geometty. Tbe inner radius is varied from

zero to 1.49 cm. (b) The azimuthal field at p = 1 vs. axial distance for the

TEO, and TEZ, modes.

TABLE I
COAXIAL CAVITY DIMENSIONS CORRESPONDINGTO FIG. 2(a). (ALL

DIMENSIONS ARE IN CENTIMETERS)

Region # 1 2 3 4

Inner radius l-. r, r, o

Outer radius 1.5 3.0 1.5 3.0

Length 1.0 4.0 0.5 6.5

TE2,, mode. Both fields exhibit an exponential decay for z .< 1

cm.

Fig. 4 illustrates the continuity of transverse field for the TM

mode at the boundary between regions 3 and 4. The inner radius is

again fixed at 0.5 cm. Twenty-two modes were used in region 4.

This is far more than required to get convergence in frequency, but

still leaves some discrepancy in Ep due to the sharp discontinuities

at the metal surfaces. The agreement in B+ is nearly perfect. The

large amplitude in B+ to the right of the boundary indicates that

considerable energy propagates out the right side.

For the second example, scattering matrix transmission calcu-

lations are com]pared with experimental measurements. Two coax-

ial circuits were built, and the comparison with TE,, transmission

data is shown in Fig. 5. The signal is injected and extracted in

standard X-band waveguide and tw ~ TE, ~ rectangular to TE, , cir-

cular waveguide adapters provide the required mode. Both circuits

utilize a constant outer radius of 1.5 cm. For Fig. 5(a), the coaxial

insert has r, = 0.5 cm, has a length of 7.48 cm and has abrupt

transitions to i-[ = O at both ends. For Fig. 5(b), the coaxial insert

has the same overall length and maximum radius, but has 310 lin-
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Fig. 4. Evaluation of the boundary conditions at the z = 5.5 cm interface

(a) continuity of E,, and (b) continuity of B+.
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Fig. 5. A comparison of theoretical and experimental TEI, transmission

data (a) for a simple coaxial insert and (b) for a tapered coaxial insert,

ear tapers on both ends to make a smooth transition to the r, = O

regions. Each taper is modeled with ten regions that have appro-

priate inner radii. Agreement in both cases is good. The tapered

case has much better transmission properties as expected. Above

12.2 GHz, the TM,, mode can propagate in the r, = O regions but

are reflected by the mode converters. This effect results in the slight

discrepancies at the upper frequency points.

IV. SUMMARY

The scattering matrix formulation of right circular cavities has

been extended to overmoded coaxial cavities. The TEM mode is

included for proper evaluation of TMO. modes. The code converges

rapidly and can simulate both abrupt discontinuities and smooth

changes in the inner and outer radii. Experimental transmission data

agrees well with theory.
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Fig. 1. View ofstrip line.

where a, are known constants [2] and al = az + as. Therefore,

.
exp (vu)

F(O) = –— R3M(0) ~.rI+ ,
(1 – uaz/rt7r)(l – tia3/mr)

6) (1 – cwz,/mr) ‘—’

Method of Interpolation Factorization (MIF) for the
Solution of Two-Dimensional Diffraction Problems

(3)

where
Vladimir Volman and Jacques Gavan

““ (1 – co/a;J(l – oJ/tx:J
R~M(@) = ~g,

(1 – oJ/rxH,) ‘
(4)

Absfract–A new method for exact solution of two-dimensional dif-
fraction problems is presented. and M is a number from which the asymptotic value presented in

(2) may be used. Let us introduce the rational fractional function

I. INTRODUCTION
Go(u) =

One of the effective mtmerical-analytical methods for the solu-

tion of a wide class of diffraction problems is the modified method

of residues [1], [2]. The principal difficulties in this method appear

when we begin the construction of a mesomorphic function. Let’s

consider a new method for the solution of this problem. For clear-

ness we shall consider TEM-analysis of a strip line (Fig. 1). As

shown in [2], this problem leads to the construction of a meso-

morphic function F(o), which satisfies the following conditions:

.

{CYm}y =

——
1) F’(w) has simple poles for OJ = cq,, where n = 1, 2, . “ . ,

CO, and foru = O;

2) F’(~nj) + hnjF(–tYnj) = O, fern = 1, 2, “ . “ , W,j = 2, 3;
A.j and ~~j are known values [2].

3) F(o) has the asymptotic behavior \ a z ’312 for 1~1 = co;

4) the residue of F(a) for u = O is equal to (– 1),

It is evident that

GO(–co) = 1 / GO(Q). (6)

Let U@be the class of rational fractional functions satisfying (6).

Then the considering problem leads to an interpolation problem in

order to define the function GO(U) from the class Uti, which is equal

toII. PRESENTATION OF THE PROBLEM

Let’s introduce a function similar to those described in [2] Go(am} = { h:) )’;M

III. BUILD UP OF THE FUNCTION F(u)

Consider the rational fractional function of class U.v = [aq in (al /a3) + a2 in (al /a2)l/Tj (1)

Go(@l= (a, – (.o)G,(LJ) + (a, + U) GO(CI,)
(a, + co) + (a, – LO)Go(a,)G,(u)

(8)where a~z and a~~ are unknown zeros of F(oJ).

F(oJ) satisfies in such form the 4th condition and fulfill the

asymptotic behavior \ ~ \ ‘3/2 for the following conditions [2]:

ffjj = rrrrjaj, n+mandj =2,3, (2)
where Gl(u) e Uu and at the point co = al GO(al) is equal to h,

independently of the selection of Gl (w).

The values G,(u) are chosen at the points am(3A4 > m > 2!) so

that the (7) is satisfied not only at the point al but at all the points

rxm(m > 2). According to (8)
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