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slot width s increases. The sharp peak may again be greater than
the broad peak as indicated by the case of s = 1.00 mm. Again the
effective dielectric constant is not strongly dependent on the slot
width.

One conclusion from Fig. 3 to Fig. 5 is that the thickness of the
substrate is the most important parameter in affecting the leakage
attenuation. The effect of changing slot width is somewhat higher
than that of the changing strip width, but both are minor in com-
parsion with that of substrate thickness.

V. CONCLUSIONS

The dispersion and leakage characteristics such as the effective
dielectric constant and normalized attenuation constant of coplanar
waveguide have been treated using the spectral-domain approach
together with the complex residue technique. To handle the com-
plex propagation constant of the coplanar waveguide, the Fourier
transform and the Parseval’s theorem in complex plane are prop-
erly extended. A number of numerical results, such as the effective
dielectric constant and normalized attenuation constant, have been
presented to illustrate the characteristics of coplanar waveguide.
Sharp peaks just after leakage together with broad peaks are two
interesting phenomena observed in the attenuation characteristics.
The physical mechanism of these peaks and the detail of transition
in ¢y and o /ky curves are still unclear and are worthy of further
study.
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The Scattering Matrix Formulation for Overmoded
Coaxial Cavities

W. Lawson and P. E. Latham

Abstract—The scattering matrix formulation for complex right-cir-
cular cavities is extended to coaxial circuits with variable inner radii.
The modified eigenvectors, which include the TEM wave, and the mod-
ified boundary conditions are presented. The properties of several con-
figurations are examined and transmission measurements are shown to
be in good agreement with theory.

I. INTRODUCTION

The operation of coaxial transmission lines in frequency bands
where only the TEM mode can propagate is straightforward and
widespread. However, some potential applications. including high
power microwave tubes. require highly overmoded coaxial cir-
cuits. Gyrotrons, for example, have utilized coaxial circuits oper-
ating in the TE; , mode [1], and more recently in the TEy ;3 mode
[2]. The principle advantage of coaxial cavities over right circular
cavities is the enhancement in stable operation due to the decrease
in mode density.

This work describes the calculation of resonant frequencies (real
part and diffractive quality factor) for overmoded coaxial cavities.
It is an extension of previous results which utilize the scattering
matrix approach [3]-[7] to analyze right circular cavities [8]. The
addition of the inner conductor results in four complications. First,
coaxial systems can support TEM waves. Second, the radial de-
pendence of the fields involve bessel functions of the second kind.
A consequence of the second fact is that the perpendicular wave
number becomes a complicated function of the inner and outer
radii. Finally, variations in the radius of the inner conductor result
in additional boundary conditions.

In Section II, the analysis is described briefly and the coefficients
of the mode coupling matrix are presented. Typical numerical re-
sults, along with some experimental data, are described in Section
III. The final section summarizes the results of this work.

II. THEORY

Because the scattering matrix approach is described in detail
elsewhere [8]. only a brief outline is given here. In this approach,
a cavity is divided into regions with uniform cross section and the
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electromagnetic fields in each region are expanded in terms of the
eigenmodes in that region. The expansion coefficients are deter-
mined by matching boundary conditions at the discontinuities be-
tween regions. This process is facilitated by computing the Mode
Coupling (MC) matrices, whose elements are generated by ex-
pressing the eigenmodes in one region in terms of the eigenmodes
in the adjacent region and can be expressed as

Py = S d’x, @ - (@7TH* (1
The integral is over the common cross-sectional area, ¢, is the mth
normalized tangential electric field, and the superscript refers to
the boundary number. The MC matrices are coupled by the scat-
tering process with matrices which represent the propagation of the
electromagnetic waves in the constant cross-section waveguide
sections. We follow exactly the notation in [8]; expressions for the
full set of ficlds and the final cascaded matrix are given there. The
differences between the coaxial and right circular cavities manifest
themselves mainly in the coefficients of the (frequency-indepen-
dent) MC matrix. These coefficients have already been computed
for right circular cavities; here we compute them for coaxial sys-
tems.

Fig. 1 shows the junction between two perfectly conducting
waveguides with different inner and outer radii. Without loss of
generality, assume that the boundary of Region 2 is contained en-
tirely with Region 1, i.e., r,, < r, and r, = r;. The case of
Region 1 being contained entirely with Region 2 can be handled
with a simple matrix transposition. The mixed boundary case, when
ry > r, and rp > ry or when r,, < r, and r, < r;, can be
handled by adding a zero length region which yields two unmixed
boundaries [8].

The eigenmodes‘in coaxial geometry depend on the cross-prod-
ucts of bessel functions, which are defined below:

DX, y) = J,0Y,(y) — (MY, x)
q,x, y) = L,0Y ,(y) — J.(NY,x)
rx, y) = J,0Y,(y) — J,(»Y,x)

sa(x, ¥) = JaY(y) — Ju(NY (%)

where J, and Y, are bessel functions of the first and second kind,
respectively. For TM modes, the pth eigenfunction for the nth azi-
muthal mode is (in cylindrical coordinates):

T = kM DY Yupli) €XP (jnd) (2a)

where j = v —1. The normalization factor, k,,Mp, is chosen to be

@/»1,717 @b
the perpendicular wavenumber satisfies v,, = x,,/7,, and x,, is the
pth solution of p,(x,,, x,,,,r /¥,) = 0. The normahzed tangentlal

electric field is given by ¢€,, = VT where V = p@/op) +
¢(jn/p). For TE modes, the elgenfunctlon is

= {W[(Wnpra)zr%(’]/nprw ’anri) -

Thy = ki@uVupPs Yuprd) exp (jnd). (3a)
The normalization factor is
ky = {W {((ﬂyn,,ro)2 = )GV upl o YrpT?)
2 -1/2
= ((ypr)* = 1) < > B (3b)
TY npi

where vy, = y,,p/ra, and y,, is the pth solution of s,,(y",,, Vipt ri/ry)
= 0. The normalized tangential electric field is given by €, = —2
X V,TE.

|
W\
REGION 1 ! REGION 2

Fig. 1. Schematic of a boundary between two coaxial waveguides.

For the TEM mode, the eigenfunction is (n = 0):

TEM — kEM 1n (P) (4a)

where

= Rrin(r,/m™""” (4b)

The tangential electric field is € = pk*™™ /p. These definitions re-
sult in the condition

27 ro
So quS pdpe,, E",I*rpr

where 6 is the kroniker delta.

In principle, there are nine different cases for the elements of the
MC matrix, depending on whether ¢, and €7 are derived from the
TE, TM, or TEM modes. However, four of the possibilities yield
zero results because TE modes never couple to the TEM mode and
TM modes in Region 2 (the smaller region) don’t couple to either
TEM or TE modes in Region 1. The remaining MC matrix com-
ponents are found by integrating (1) either directly or by parts. The
integration in the radial direction is from r;, to ry,. The results are
summarized below:

= Sy * Sy

TE — TE:
27y Iy roknki |
Pmi = ——2;22—’ Sn('Ymron ‘Ymril)qn(')/irola 'YiriZ)
Yi T Ym
2 1
- s:1(71nri25 'Ymril) (52[)
T \F2Yi
™ — TM:
27r7r2r17ir02kszzM
Pmi = _Yz _ ,an rn(‘Yir(727 'Yir('Z)Pn("/mr(Qr ’Ymril)
2 1
+ ; oy pn(7mri2’ 7mri1) (Sb)
™ — TE:
Pmi = _ijnklgk% {%(%‘%2, 'YiriZ)pn('Ymrz)b ’Ymril)
2 1
- ; a pn('YmriZs Ymli) (50)
™ — TEM:
Pmi = 27rk%k;5M[p0(‘Ymr02? 'Ymr[l) - pO(’Ym"iZ? 'Ymril)] (Sd)
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TEM — TEM:

Pml = 27rkrl;:lelEM In (ro2/r:2)- (5@)

In (5), v,, indicates ¥,,, in Region 1 and v, indicates v,, in Region
2. It is straightforward to show that these matrix elements reduce
to the ones given in [8] in the limit #,;, r, = 0.

III. NuMmEeRricaL REsSuLTS

In this section we discuss two examples. First, the scattering
formalism is used to calculate the resonant frequency of a cavity
with a coupling aperture. Second, the approach is used to compute
power transmission data through a coaxial circuit with a varying
cross section.

Consider the microwave circuit shown in Fig. 2(a). The lengths
and outer radii of the four regions are given in Table I. An inner
conductor of variable radius, 0 < r, < 1.5 cm, extends through
the first three regions. A qualitative description of the dependence
of resonant frequency on inner radius is as follows. First, assume
r, = 0 and consider all the closed cavity (CC) eigenfrequencies
corresponding to the length and outer radius of region two. If an
ideal (CC) resonant frequency is below the cutoff frequency of the
lowest corresponding radial mode (usually the TE,)) in the adjacent
regions, then the eigenfrequency of the actual mode will be close
to the CC frequency. Also, the corresponding quality factor (Q)
will be quite high. Otherwise, the mode is a complicated ‘‘whole
tube’’ mode whose energy is often not well localized.

Because the zeros of the TM modes, x,,, increase monotonically
with inner radius (for a fixed outer radius), the corresponding TM
eigenfrequencies and Qs increase with r,. The cutoff frequencies of
the TE,; modes (n > 0) decrease, however, because y,, approaches
n as r, approaches ry. Therefore, the corresponding TE,,, resonant
frequencies and Qs decrease. The higher order TE,,(p > 1) eigen-
frequencies initially decrease, but then increase due to the interlac-
ing of TE and TM mode zeros. The TE,, cutoff frequencies are
equal to the TM,, frequencies, so the TEg, resonant frequencies
monotonically increase with inner radius.

For the circuit of Fig. 2(a), these concepts are illustrated in Fig.
3 with three representative modes. Fig. 3a represents the depen-
dence of resonant frequency for modes with one axial variation
when r; = 0. The corresponding quality factors are shown in Fig.
3(b). The TE,;; mode’s resonant frequency is slightly below the
CC result and decreases as predicted. The quality factor also de-
creases as predicted. The increase in both frequency and Q at the
very end as », = r, occurs because of the increased reflection at
the predominantly metal boundary. The TEg;; mode tracks the CC
result almost exactly because of the large @ factor which quickly
goes off the theoretical scale.

The behavior of the TMy, mode is considerably more compli-
cated. When r, = 0, the TM mode is moderately well cutoff, which
results in a high Q (~400) and a resonant frequency near the CC
result. The addition of an inner conductor allows coupling to the
TEM (with no cutoff frequency) and drastically drops the @. While
the r, = O limit is recovered, the quality factor drops to about Q
~ 100 when ; = 107% cm. The second complication involves
mode crossings between the TEM and TM modes. The second ax-
ial TEM mode has a CC resonant frequency at 7.49 GHz. This
results in the peak in Q and the slow variation in resonant frequency
near r, = 0.7 cm.

Fig. 2(b) shows the axial field variation in E, for the TE(, and
TE,, modes at a radius of 1 cm when r, = 0.5 cm. The figure
reveals the continuity of E; at the boundaries. The relative peak is
higher for the TE,;; mode because of its higher Q. Likewise, the
amplitude of the travelling wave (+ > 5.5 cm) is larger for the
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Fig. 2. (a) The simulated coaxial geometry. The inner radius is varied from
zero to 1.49 cm. (b) The azimuthal field at p = 1 vs. axial distance for the
TE,, and TE;, modes.

TABLE I
CoAXIAL CaviTY DIMENSIONS CORRESPONDING TO F1G. 2(a). (ALL
DiIMENSIONS ARE IN CENTIMETERS)

Region # 1 2 3 4
Inner radius r, 7, 7, 0
Outer radius 1.3 3.0 1.5 3.0
Length 1.0 4.0 0.5 6.5

TE,;; mode. Both fields exhibit an exponential decay for z < 1
cm.

Fig. 4 illustrates the continuity of transverse field for the TM
mode at the boundary between regions 3 and 4. The inner radius is
again fixed at 0.5 cm. Twenty-two modes were used in region 4.
This is far more than required to get convergence in frequency, but
still leaves some discrepancy in E, due to the sharp discontinuities
at the metal surfaces. The agreement in B, is nearly perfect. The
large amplitude in B, to the right of the boundary indicates that
considerable energy propagates out the right side.

For the second example, scattering matrix transmission calcu-
lations are compared with experimental measurements. Two coax-
ial circuits were built, and the comparison with TE; transmission
data is shown in Fig. 5. The signal is injected and extracted in
standard X-band waveguide and tws TE,, rectangular to TE;, cir-
cular waveguide adapters provide the required mode. Both circuits
utilize a constant outer radius of 1.5 cm. For Fig. 5(a), the coaxial
insert has r, = 0.5 cm, has a length of 7.48 cm and has abrupt
transitions to r, = 0 at both ends. For Fig. 5(b), the coaxial insert
has the same overall length and maximum radius, but has 31° lin-
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Fig. 5. A comparison of theoretical and experimental TE,; transmission
data (a) for a simple coax1al insert and (b) for a tapered coaxial insert.

ear tapers on both ends to make a smooth transition to the r, = 0
regions. Each taper is modeled with ten regions that have appro-
priate inner radii. Agreement in both cases is good. The tapered
case has much better transmission properties as expected. Above
12.2 GHz, the TM;; mode can propagate in the r, = 0 regions but
are reflected by the mode converters. This effect results in the slight
discrepancies at the upper frequency points.

IV. SumMmARrY

The scattering matrix formulation of right circular cavities has
been extended to overmoded coaxial cavities. The TEM mode is
included for proper evaluation of TM,,, modes. The code converges
rapidly and can simulate both abrupt discontinuities and smooth
changes in the inner and outer radii. Experimental transmission data
agrees well with theory.
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Method of Interpolation Factorization (MIF) for the
Solution of Two-Dimensional Diffraction Problems

Vladimir Volman and Jacques Gavan

Abstract—A new method for exact solution of two-dimensional dif-
fraction problems is presented. ‘

I. INTRODUCTION

One of the effective numerical-analytical methods for the solu-
tion of a wide class of diffraction problems is the modified method
of residues {1], [2]. The principal difficulties in this method appear
when we begin the construction of a meromorphic function. Let’s
consider a new method for the solution of this problem. For clear-
ness we shall consider TEM-analysis of a strip line (Fig. 1). As
shown in [2], this problem leads to the construction of a mero-
morphic function F(w), which satisfies the following conditions:

1) F(w) has simple poles for w = «,;, wheren = 1,2, - - -,
oo, and for w = 0;

2) F(anj) + )\njF(_anj) = 07 forn = 1: 27 Y Oo’j = 2’ 37
A,; and «,; are known values [2].
3) F(w) has the asymptotic behavior | w 2 ~3/? for |w| = oo;

4) the residue of F(w) for w = 0 is equal to (—1),

II. PRESENTATION OF THE PROBLEM

Let’s introduce a function similar to those described in [2]

_oexp(rw) o (- w/ap)(i — w/apm)
Fa) = —=—— T A — w/ay) ’
v =lasIn (@ /&) + a In(a,/a)l/7, 6]

where «}, and a3 are unknown zeros of F(w).
F(w) satisfies in such form the 4th condition and fulfill the
asymptotic behavior | w | ~3/2 for the following conditions [2]:

n— oandj = 2, 3, )

’

ay = nw/a,
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where a; are known constants [2] and a;, = a; + as. Therefore,

_exp (rw) = (1 = way/nm) (1 ~ way/nw)
Fle) = - @ Rou(w) n=1ﬂ}+l (1 — wa,/nm) ’
3
where v
M
_ (1 = w/ap)( — w/om)
RSM(w) - nl}l (1 _ w/anl) 3 (4)

and M is a number from which the asymptotic value presented in
(2) may be used. Let us introduce the rational fractional function

_Rw@ | _
Gol@) = - —w) e e

Ot e/ - /e~ e
(1= w/a)(1 + 0/ + o/ag)l,-,,

- oy
m s
{am}?M = {—amla Oy s am?n}llw’ {)\ﬁr?)}?M

= {0, Moy Na}! &)

It is evident that
Go(—w) = 1/Gylw). (6)

Let U, be the class of rational fractional functions satisfying (6).
Then the considering problem leads to an interpolation problem in
order to define the function Gy(w) from the class U,,, which is equal
to

Golo} = {ND 1 )

III. BuiLp Up oF THE FuNcTION F(w)

Consider the rational fractional function of class U,

(@ — WG (W) + (o + @W)Golay)
(a; + ) + () — W)Go(e)G(w)

Golw) = ®)

where G(») € U, and at the point w = o;Gpler;) is equal to A,
independently of the selection of G(w). '
The values G,(w) are chosen at the points «,,(3M 2 m 2 2) so

that the (7) is satisfied not only at the point «| but at all the points
a,,(m = 2). According to (8)

G O APy + o
e = N0 (o — e

= (A3 ©)
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